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Eight variational principles of the classical theory of elasticity [l] are obtained 
in a different form for the case of finite deformations of an elastic body. The 
deviation from the calssical theory consists of the fact that the dual tensors are 
not symmetrical, These tensors are represented here by the Piola stress tensor 

and the gradient tensor of the radius vector of a point of the deformed body. 

Volume and surface equations of equilibrium of an elastic body can be written as 

I% 31 V-D+p,K=O in u (1) 
n-D = F” on 0 (2) 

Here V is the Del operator in the metric of the undeformed state, D is the nonsymme- 
tric Piola stress tensor, ~0‘ is thedensity of the undeformed material, K is the body force 
vector, F” is the surface force vector per unit area of the undeformed body. II is the 
volume occupied by the undeformed body, o is the surface bounding v, and n is a normal 
to the surface 0. 

The general solution of (1) has the form 

D=VxcD+UE (poK = -VU) (3) 

where @ is an arbitrary, twice-differentiable tensor, u is the potential of the volume 
forces and E is the unit tensor. The tensor D is a potential tensor function of the gra- 

dient tensor of the radius vector of a point of the deformed body [4] and is given by 

D=$, C==VR 

where -w is the specific potential strain energy. 

We further bring into consideration the specific complementary strain work as a func- 

tion of the components of the Piola stress tensor, related to W through the Legendre 

transformation B = D..CT- w (5) 
The property of the Legendre transformation implies that 

(6) 
A method of expressing the specific complementary strain work in terms of the Piola 

stress tensor is given in [4] for an isotropic body. The tensor C defined by (6) is not, in 
general, a gradient of a vector. The following condition of compatibility represents the 
necessary and sufficient condition for C to be a gradient: 

v xc=0 (7) 

Considerations that follow are based on the following identities valid for any differen; 

tiable tensors P and Q and for the vector a: 
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V.(P.a) = a.(V.P) + PT. .Va (8) 

&[Vx(P.Q)]=-V+(P.Q)=Q+‘xP)- PT.-(Vx QT) (9) 

Here II denotes the first tensor invariant and E = - E x E is an isotropic tensor of 

the third rank (the Levi-Civita tensor). From (8) and (9) we obtain the following integral 
identities 

i& a.(V.P)dz = - ~$PT~.Vadz +i[n.P.ado (W 
V V 0 

SSSQ..(V~P)dt=SSSPT..(Vx QT)dr-&n+.(P~Q)dO (11) 
u. 21 0 

Let o,be the part of the surface on which the external forces are given and let the 
displacements R = R* be given on os = o - or. The external forces are assumed 

to be the “dead type” loads, i.e. the vectors K and P” do not depend on the displace- 
ments. 

First principle. Consider the functional 

J,(R)=s~s[W(R)--p,K.u]dz--SSF”udo (12) 
01 

over the displacement vector u . The conditions that 8 J, (R) I 0 and 6R = 0 

on o2 are equivalent to the following equations in terms of displacements 

V.D(R)+poK=O in u 

and the boundary conditions 
n.D(R)=F” on o1 

Proof. By (4) and (10) we have 

6J1= 
sss 

(D+.GVRT-p,,K.6R)dT- F”.GRdo=: 
ss 

v 01 

= 
5 

(n.D-FF”).SRdo- *SR*(V.D +p,,K)& 
c SSI 

01 V 

Second principle. We consider a functional over the displacement vector and 
the Piola stress tensor 

- ss F’“.udo - n.D.(R -R*)do ss 
01 08 

The condition SJ, (R, D) = 0 is equivalent to the equations 

V.D+p,K=O, VR=q in u 

and the boundary conditions 

n.D = F” on ol, R = R* on 02 

Proof. By (6) and (10) we have 

&Jz=- M (V.DfpoK).SRdz+ VR-G 
> 

..6DTdz+ 
a. 

V 
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+ss (n.D-F”).6Rdo- n.GD.(R - R+)do 
01 02 

Third principle. The functional 

J,(R.D,C)=&W(C)-DDT~.(C-VR)-ppoK.uldr- 
0 

- 
ss 

F”.udo - n.D.(R - R*)do ss 
01 01 

The condition 6J, (R, D, C) = 0 is equivalent tq 

V.D+p,K=O, D=g, C=VR in u 

and the boundary conditions 

n*D=F” on ol, R = R* on oa 
Proof. 

Fourth principle. We assume that o = o1 and denote by B [D (@)l the 
specific complementary strain work expressed, according to (3), by the tensor 0. The 

functional is 

The conditions 6 Jo = 0 and 60 = 0 on o = olare equivalent to the following 
compatibility equations for the tensor -@, : 

V x C (@) = 0 in V 

Proof. By (11) and (6) we have 

sss . 
&ra = g ** (vx&&jz= ,*CT..(VX6aqdc= see 

4” 

= sss &DT..(VxC)dr-_ cs :.r..(l@.CTwJ 
II 0 

The variational principle giving rise to the compatibility equations written in terms of 
the components of the tensor D, was given in [4] in a slightly different form. 

Fifth principle. The functional 

The conditions 6J, = 0 and &D = 0 on o = o1 are equivalent to the equations 

D(O) =d;, VxC=O in v 

Proof. 

aJ,=SSS(D-~)..GCTdr+SSS6~T..(VxC)dr-SSnz( 

1) 0 0 
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Sixth principle. The functional 

Je(C, D,@)=&[B(D)- CT~~(D-V~~----~)l~~ 
u 

The conditions 6J,, = 0 and 60 = 0 on o = o1 are equivalent to the equations 

C 
dB 

=a’ vxc=o, D=Vx@+UE 

Proof. 

6&=s~~($$-C) ..soTdr-s~S(D-VXQI--UE)..GCTdr+ 
al U 

+sss 
&P*..(VXC)dt-_ n.e..(60.CT)d, 

FS 
D 0 

Seventh principle. The functional 

J,(R,D,C,@)=jjj[D..VRT-~(D)+D(@).*CT-~(C)ld~- 
1) 
- jjjpo~.ud~-jjF~.~d~ 

v 0 

The conditions 6J, = 0 and ij@ = 0 on o = o1 are equivalent to the equations 

V.D+p,K=O, D(m)=%, VR=$, VxC=o 

and the boundary conditions 
n.D=F” on O=O, 

Proof. 

651=- 
sss 

(V.D+poK).6Rdt+ 
SSS( 

VR- g 
) 

..iiDTdr+ 

” v 

+SSS( 
D-g 

1 
..6CTdt+ CS (n.D -FF”).6Rdo- 

c 
* 0 

- 
ss 

n+@P-CT)do+ SCS &.P~. .(VxC) dt 
I 

0 * 

Eighth principle. The compatibility equations for the tensor C follow from the 
fact that the functional Je (C) is stationary when 6C = 0 on o 

Js(C)=~SSs~~..(vxc)d~ 
v 

Proof. By (11) we have 

MB=+ SCS c ]6CT+‘XC)+CT..(VX8C)]dr=+\&CT..(VXC).dr+ ” 
v 0 

1 
+2 6CT sss ..(VXC)dr-; 

ss 
n.e..(GC.C’)do= 

0s 
6CT ..(VXC)dZ 

D 6 il 

The author thanks A. I. Lur’e for the attention given to this work. 
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Within the scope of the Kubo linear reaction based on the classical Gibbs forma- 
lism without involving known additional representations, expressions in terms of 
the time correlation functions are obtained for four tensors of the viscosity coef- 
ficients of an asymmetric medium. Independently of the time correlation func- 
tion apparatus, expressions are established for the ultimate high-frequency and 
adiabatic elastic moduli by analyzing the increments of the stress tensors upon 

application of a small strain. 

Macroscopic phenomena of the internal (rotational) degrees of freedom are 
the center of attention of phenomenological theories of asymmetric media (see 

[l-4], for example). According to these latter, the motion of a continuum is 
described by the field of mean angular velocities of the natural particle rotation 
as well as by the field of mean translational velocities. The state of strain is 
defined by two strain rate tensors (two strain tensors), and the state of stress by 

tensors of the ordinary and couple stresses. 

Moreover, many important characteristics of the behavior of asymmetric media 

cannot be determined within the scope of the phenomenological approach. An 
experimental study also encounters a number of difficulties. 

Modem methods of the statistical theory of irreversible processes provide the 
possibility, in principle, of a theoretical determination of the characteristics of 
the behavior of the systems under consideration. 

Earlier, conservation laws for asymmetric media [5] were given a statistical 
foundation on the basis of the Liouville equation. Conservation laws and irrevers- 
ible processes in these media have been examined in [S] by the method of a non- 

equilibrium statistical operator. The method of correlative functions of condi- 
tional distributions [7, 81 has been applied in giving a statistical foundation to 
the conservation laws and singularities of the kinematics of a medium. The 
expressions obtained for the stress tensors and the couple stresses afforded a possi- 


